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I INTRODUCTION TO VOLUMES I & I1 

Contract H i s  to ry  

The study of anode h i s t o r y  i n  high powered xenon a r c  lamps came about as a r e s u l t  

of the NASA/MSC and USAF/AEW i n t e r e s t  i n  such lamps f o r  use i n  s o l a r  simulators 

f o r  l a rge  a rea  thermal vacuum t e s t i n g  of space vehic les .  

During the performance of USAF/AEDC cont rac t  #AF 40(600)-1140, the  sho r t  a r c  

lamp was i d e n t i f i e d  as an important component i n  the modular s o l a r  simulator.  

had been found t h a t  the o r i g i n a l  carbon a r c  lamps which had been proposed f o r  

Mark I a t  Tullahoma, Tennessee and were i n  use i n  Chambers A & B a t  NA$A/MSC did  

not  possess the  desired performance charac te r i s  t i c s  f o r  high f i d e l i t y  s o l a r  

simulation. By converting t o  xenon a r c  sources,  it was determined t h a t  o p t i c a l  

performance could be improved and the s t a b i l i t y  and r e l i a b i l i t y  could be v a s t l y  

improved. However, the high powered xenon lamps required (near 20 KW input  power) 

were only being b u i l t  i n  small quan t i t i e s ,  and accurate  l i f e  data  d id  not r e a l l y  

e x i s t  t o  subs tan t ia te  the r e l i a b i l i t y .  I n  order  t o  b e t t e r  def ine t h i s  important 

c r i t e r i a ,  USAF/AEDC cont rac t  AF 40 (600) -1140 was d i rec ted  towards a multi-phased 

e f f o r t  of evaluat ion and t e s t .  

It 

The l i f e  test  resul ts  a t  the end of Phase III of  t h i s  cont rac t  were inconclusive 

and i t  was found t h a t  the mechanism of fa i lure  was not  w e l l  known. While the 

lamps had shown g r e a t e r  than 200 hour l i f e ,  there  had been no apparent reason f o r  

f a i l u r e .  I n  the meantime, indus t ry  had a l s o  found some lamps running as long as 

% 

1,000 hours. 

A cont rac t  modification was made t o  allow f u r t h e r  study of the f a i l u r e  character-  

i s t i c s  of the xenon lamps, with spec i f i c  emphasis, towards the water cooled anode 

problems. 

t h i s  e f f o r t  expanded and development problems arose ,  the l imi t ed  AEDC funding d id  

not allow completion of t h i s  phase. 

separate  cont rac t  NAS 9-9831, the continuation of the study. 

This phase was j o i n t l y  funded by USAF and NASA/MSC. A s  the scope of 

Subsequently, NASA/MSC funded under a 

While t h i s  repor t  i s  r e a l l y  the f i n a l  r epor t  under NAS 9-9831, the report ing under 

the previously USAF and j o i n t  USAF/NASA cont rac t  are referenced, and i n  some cases 

repeated herein i n  order  t o  add c l a r i t y .  



Scope of the Preceding Phases 

Phase I 

A summary of the work conducted i n  Phase I i s  as follows: 

r e su l t ed  i n  repor t  f o r  AEDC "Research ..... Lamps" dated 7 December, 1966. 

a .  A xenon compact a r c  source working i n  conjunction with a coll imating 

mirror system s imi l a r  t o  t h a t  o r i g i n a l l y  proposed f o r  Mark I can be 

b u i l t  t h a t  w i l l  s a t i s f y  the performance requirements o r i g i n a l l y  

spec i f ied  f o r  Mark I. 

b .  Such a system can be b u i l t  without requir ing major change t o  ex i s t ing  

chamber and bui ld ing  s t ruc tu re  

c. The predicted input  power requirements f o r  the compact a r c  source 

a r e  within ex i s t ing  s ta te -of - the-ar t  power l e v e l s  

d. While accurate and r e l i a b l e  data  does not  y e t  e x i s t  f o r  a r c  lamps i n  

t h i s  required power l e v e l ,  (below 20 KW) a reasonable project ion of 

present experience would ind ica te  t h a t  the l i f e t i m e  of these sources 

would be i n  excess of 400 hours. 

t h i s  cont rac t  are expected t o  provide f u r t h e r  information on t h i s  

subject .  

R e s u l t s  from the  t e s t ing  phase of 

e. For the  compact a r c  module, a rev is ion  i n  the coll imation angle from 
0 1 

a l l  system ef f ic iency .  

t o  1s' is  recommended because of  the s i g n i f i c a n t  gain i n  the  over- 

f .  I n  order  t o  minimize in te r fe rence  with ex i s t ing  r i b  s t ruc tu re  on the 

vacuum chamber, it i s  recommended t h a t  the module coll imating mirror  

dimension be changed from 40.0 inches t o  41.625 inches across  the 

f l a t s .  Eff ic iency ana lys i s  ind ica tes  t h a t  the compact a r c  module 

w i l l  have s u f f i c i e n t  energy t o  i l luminate  t h i s  l a r g e r  area.  

g.  Pending s a t i s f a c t o r y  r e s u l t s  of  the l i f e  t e s t i n g  phase program, a 

compact a r c  modular s o l a r  simulator i s  the recommended appreach to  

satisfy the AEDC Mark I requirements. 



Phase I1 

developmental lamps from severa l  manufacturers. 

A lamp evaluat ion program r e s t r i c t e d  t o  a p a r t i c u l a r  se t  of e a r l y  

Phase 

a. 

b. 

C .  

a. 
e. 

f .  

g.  

h. 

Phase 

I11 L i f e  test program on a se lec ted  lamp. Parameters s tudies:  

Degradation of lamp output wi th  t i m e  

Spec t ra l  d i s t r i b u t i o n  

Polar  d i s t r i b u t i o n  and in tegra ted  r ad ian t  power output 

Micro-radiance d i s t r i b u t i o n  

Input cur ren t  and voltage 

Envelope temperature 

Power d i s s ipa t ion  i n  the  electrodes 

I n t e n s i t y  output i n  the spec t r a l  range f o r  0.38 t o  1.1 microns. 

I V  which w i l l  be covered i n  t h i s  volume ' wszs di rec ted  a t  the t e s t i n g  and 

evaluat ion of d i f f e r e n t  anode configurations f o r  20 KW xenon a r c  lamps. 

evaluations were used t o  determine performance c h a r a c t e r i s t i c s  f o r  the  lamp and 

t o  determine the f a i l u r e  mode, i f  possible.  Special  a t t e n t i o n  was given to  the 

study of the thermal hea t  t r a n s f e r  cha rac t e r i s t i c s  f o r  water cooled copper anodes 

f o r  such lamps. 

t o  i t s  demise w a s  not perfected,  however, a technique was developed which bears 

f u r t h e r  inves t iga t ion  and promises t o  lead t o  a b e t t e r  understanding of  the hea t  

t r a n s f e r  proper t ies  and may o f f e r  a fa i lure  warning or malfunction alarm. 
the f i n a l  months of the cont rac t ,  one lamp was successful ly  run f o r  a b r i e f  

period with minute thermocouples embeded within the anode she l l .  

extensive data co l l ec t ion  was made on a second lamp which operated over a wide 

range of power and anode coolant flow conditions.  

These 

A method t o  warn of impending f a i l u r e  of  a sho r t  a r c  lamp p r i o r  

During 

Further,  an 



I1 INmODUCTION To VOLUME I (PHASE IV) 

This repor t  covers the work accomplished under the National Aeronautics and Space 

Administration Contract Number  NAS 9-9831 with the  NASA Manned Spacecraft  Center, 

Houston, Texas. 

d i f f e r e n t  anode configurations f o r  xenon s h o r t  a r c  lamps. 

t o  be used t o  determine f a i l u r e  modes and performance cha rac t e r i s t i c s  f o r  the  

lamp and anodes. 

standing of water cooled electrodes i n  high powered xenon shor t  a r c  lamps towards 

improving the r e l i a b i l i t y  and extending t h e i r  usefu l  l i f e .  

The object ive of the  cont rac t  was to  t es t  and evaluate  severa l  
These evaluat ions were 

The long run object ive was t o  add t o  the technology and under- 



I11 TEST PLAN 

An o r i g i n a l  premise es tab l i shed  a t  the comencement of the  contract  w a s  t h a t  

high powered xenon shor t  a r c  lamp f a i l u r e s  were l a r g e l y  caused by thermal f a i l u r e  

of the anodes; fu r the r ,  the  proper s h e l l  thickness f o r  optimum hea t  t r a n s f e r  i n  

copper anodes was notknown. Original ly ,  the i n t e n t  was t o  assemble as many 

lamp assemblies as possible  during the course of the cont rac t  with three anode 

s h e l l  thickness spec i f ied  i n  the bas i c  cont rac t  t o  cover a broad range and the 

remainder t o  be s ized based as the r e s u l t  of the tests of the previous anode 

thickness.  Later ,  the cont rac t  was amended t o  emphasize the incorporation of 

the temperature measuring devices i n  the anode s h e l l s  and t o  allow the  number of 

anodes fabr ica ted  t o  be determined by funding and schedule cons t ra in ts .  

Lamps were t e s t e d  i n  the v e r t i c a l  o r i en ta t ion  i n  an open t e s t  c e l l  with no 

co l l ec to r  o r  o the r  obstruct ions present t o  perturb the operation of the lamp. 

A closed loop water system was used which was f i l t e r e d  t o  maintain a p a r t i c l e  

s i z e  of 5 microns o r  less throughout lamp operation. The ph of the water was 

maintained a t  7 -0.5. 
Due t o  the shortness of the t es t  no determination on the amount of s ca l e  deposi te  

o r  s imi l a r  deposit ion was de t ec t ib l e .  The coolant i n l e t  pressure t o  the lamp 

had a maximum range of 300 psig.  Continuous char t  recording was made of th ree  

pressure values f o r  the coolant,  flow and the temperature d i f f e r e n t i a l  between 

the  dnle t  and o u t l e t .  The precis ion of these measurements was compatible with 

the recording device and the o ther  instrumentation. The input  water pressure 

f o r  the anode was equal t o  g r e a t e r  than 200 psig where i t  was possible  t o  obtain 

the desired flow (as the t es t  was reduced i n  water flow r a t e  the i n l e t  pressure 

was reduced accordingly, t o  obtain the corresponding flow required).  

+ The conductivity was maintained a t  less than 50 mho/cm. 

The s t a b i l i z a t i o n  t i m e  required between power s e t t i n g s  var ied from one run t o  

the next, therefore ,  the  t i m e  t o  reach a s t a b l e  value was observed by the operator  

on the continuous cha r t  recorder  before proceeding t o  the  next point.  Due t o  the 

instrumentation used, the power l e v e l  was increased t o  50 ampere s teps  i n  l i e u  of 

1 KW s teps .  

ment was being made as the  voltage and the cur ren t  both vary with. increasing power). 

(The use of power s teps  would require  a ca lcu la t ion  while the ad jus t -  



Any over-shoot would not  be amenable t o  lowering as a possible hysteresis would 

probably develop; t h i s  has been shown i n  the  pas t  t o  happen with a rc  attachment 

on the cathode. I n  both cases where the lamp f a i l e d ,  the  mode of f a i l u r e  was 

the  observed formation of a c r a t e r  accompanied by a molten condition of the anode 

t i p .  



I V  LAMP SPECIFICATIONS AND CONSTRUCTION 

I n i t i a l l y ,  at tempts were made t o  f ab r i ca t e  copper anode s h e l l  by the conventionly 

method of stamping from s o f t  copper stock and added the instrumentation after the 

desired shape w a s  formed. Also, a technique was invest igated t o  embed thermo- 

couples within successive copper s h e l l s .  However, t h i s  method d id  not  warrant 
f u r t h e r  consideration due t o  the  thermal grad ien t  uncertant ies  between the 

various she l l s .  

A l l  anodes were designed t o  be similar t o  Riise Anode as described i n  NASA Tech 

B r i e f  67-10247 dated November 1967. Figure I shows a cross-section of the lamps 

tes ted .  X-rays were taken of the anodes after assembly and before i n s t a l l a t i o n  

within the lamp, however, due t o  the  double r a d i i  of the inner  cons t r i c to r  and 

the  s i m i l a r i t y  of the materials only q u a l i t a t i v e  conclusions could be made from 

the  radiographs. 

A l l  i n t e r i o r  surfaces  were e i t h e r  machined t o  c lose tolerances or were formed 

by electrodeposi t ing high pu r i ty  oxygen free copper on a s i lve red  subs t r a t e  

which examplified mirror l i k e  surface f i n i s h .  

I n i t i a l l y ,  the plan was t o  f i l l  the lamp envelope with a charge of xenon somewhat 

lower than the f i v e  atmospheres spec i f ied  i n  the Statement of Work and upon a 

second f i l l i n g  increase the  pressure t o  the  f i v e  atmospheres. However, the 

i n t e n s i t y  of the  lamp on the f i r s t  f i l l i n g  was of a s u f f i c i e n t  high value t o  

ind ica te  t h a t  a second f i l l i n g  was not  required.  
+ copper p l a t e  was 12.7 -*2 nm when assembled within the envelope with mechanical 

seals. 

The a r c  gap af ter  the f i n a l  

The envelope and end flange configuration conformed to  the J I C  spec i f ica t ion  

cont ro l  drawing #015564. 



V SPECIAL INSTRUMENTATION 

The o r i g i n a l  i n t e n t  was t o  obtain temperature da ta  i n  the  i n t e r i o r  of the anode 

t o  allow v e r i f i c a t i o n  of the thermal analyses previously accomplished by o thers ,  

Hornbaker and R a l l s  , and Hakala Unfortunately, i n s u f f i c i e n t  data  was 

obtained t o  warrant intense theo re t i ca l  ana lys i s  of the few data  points  and the 

l imi t ed  c r e d i t a b i l i t y  of the data.  Therefore, g r e a t e r  emphasis was placed on 

the remaining data  s p e c i f i c a l l y  the flow, temperature differences,  and rad ian t  

and o ther  output cha rac t e r i s t i c s  of the lamp which d id  not  have the thermocouples 

present.  

Boston on Apr i l  12, 1970, and it summarized the d i f f i c u l t i e s  encountered i n  the 

development of the attachment of thermocouples within the anode. Although, the 

problem was solved with the use of e lectrodeposi t ion techniques there  was in -  
s u f f i c i e n t  t i m e  or funds remaining on the present  cont rac t  to car ry  out  the 

necessary f ab r i ca t ion  and assembly, and t e s t i n g  of the f f n a l l y  developed lamp 

with e igh t  thermocouples attached. I n  the data  contained i n  Appendix B, one 

can see the l imi t ed  thermocouple data  l i s t e d  under Lamp #2, Table B-7. 

1 2 

Appendix A i s  a copy of the paper presented a t  the IES meeting i n  

An infrascope w a s  used which measured the temperature of the quartz envelope by 

viewing the quartz  a t  an oblique angle and using as narrowband i n  the in f r a red  

spectrum. The temperatures of the quartz  are tabulated i n  Appendix B-4. 

On the Lamp #l, as seen i n  Table B-3, it was found t h a t  there was negl ig ib le  

heating of the lamp seals and the recording of t h i s  parameter was deleted t o  

allow more important parameters t o  be continuously monitored. 

The quartz  envelope w a s  photographed with a palariscope p r io r  to acceptance. 

However, during the mounting and i n i t i a l  pumpdonw phase of the envelope with a 
graded g l a s s  seal, a highly loca l ized  stress was developed which caused a crack 

t o  develop and cause r e j ec t ion  of the envelope from f u r t h e r  consideration. The 

o ther  envelope has been viewed with polar ized l i g h t  s ince  the operation on two 

d i f f e r e n t  occasions and no not iceable  s t r e s s e s  are present.  This i s  as expected 

as  the operat ion of the lamp i s  i n  a temperature range where l i t t l e  r e s idua l  

s t r e s s e s  should remain a f t e r  any appreciable operation. Government furnished 



multichannel recorders  are used to  record continuously the following parameters 

which are a l s o  tabulated i n  Appendix B Tables; Lamp voltage,  Lamp cur ren t ,  Xenon 

pressure within the lamp, Water flow Q i t h i n  the anode, Radiant i n t ens i ty ,  

Temperature d i f f e r e n t i a l  from the anode i n l e t  t o  o u t l e t ,  the water pressure,  with- 

i n  the anode a t  three pos i t ions  one a t  the  t i p ,  and one upstream 0.594 inch, and 

one downstream 0.594 inch. 

Polar  scans were made f o r  each power l e v e l  t h a t  the pump was operated a t .  This 

allowed the s p a t i a l  va r i a t ion  of the a r c  t o  be s tudied as a funct ion of power 

as were over an extended period of t i m e ,  A s  mentioned above, the i n t e n s i t y  was 

also recorded continuously by the u s e  of a solar c e l l .  This was t o  look a t  any 

s h o r t  durat ion f luc tua t ions  of the i n t e n s i t y  even though the s p e c t r a l  response 

of the s o l a r  c e l l  was d i f f e r e n t  than the DR-2 de tec to r  and s o l a r  c e l l  which were 

used f o r  the polar  d i s t r ibu t ions .  

During run 1 of Lamp #1, s t r a i n  gauges were employed, however, l i t t l e  informa- 

t i o n  could be gained from t h e i r  appl ica t ion  and i t  was determined t h a t  the d i s -  

colorat ion t o  the  quartz  by the adhesive was a g r e a t e r  r i s k  t o  the l i f e  of the 

lamp than the amount of information which may have been gained by i t s  presence. 

Also on the i n t i a l  runs of the Lamp #1 i n  i t s  f i r s t  configurat ion,  high speed 

motion p ic tures  were made, subsequent photographs were made with the use  o f  

fas t  shu t t e r  s t i l l  camera to  determine the degree of a r c  wander present  and 

only quan t i t a t ive  statements can be made. 

I n  l i e u  of a small angle de tec tor  t o  measure polar  i n t e n s i t y  and iso-bpightness 

p ro f i l e s  two o the r  techniques were employed. F i rS t ,  a s e t  of de tec tors  were 

used f o r  the polar  i n t e n s i t y  d i s t r i b u t i o n  which had a l imi t ed  aperature .  

of these da ta  a r e  shown i n  Figures 12a t o  12g i n  Appendix B. Additionally,  a 

set  of chemically sens i t i zed  paper was exposed t o  the projected image of the 

a r c  f o r  varying periods of t i m e  f o r  a set  of power l e v e l s  of the lamp and a 

quan t i t a t ive  measurement of the iso-br ightness  p r o f i l e s  was obtained. 

A se t  



V I  DATA - 

The presentat ion of the da ta  i s  i n  Appendix B with both a tabulated and graphi- 
c a l l y  format which w i l l  allow a quick d isp lay  of the r e l a t i o n  of the  various 

parameters one t o  another. 

reduction and co l lec t ion  w i l l  follow the same organization as  i n  the appendix 

t o  minimize confusion on the p a r t  of the reader  and allow ready cross  reference.  

The following b r i e f  discussion of the da ta  and i t s  

Lamp #1 Run #l & 2 (1968) 

Table B-1 contains the summary of the  da ta  taken on the f i rs t  lamp i n  the f a l l  

and winter of 1968. 
using an electroformed copper anode s h e l l  with a laminated p la t ing  technique. 

The purpose was to  insure t h a t  the copper deposit ion could be stopped to  allow 

the addi t ion of thermocouples and then the  p la t ing  continued. The thickness 

of the anode s h e l l  a f t e r  f i n a l  assembly w a s  0.072 - .002 inch. The construction 

of the anode and lamp i s  similar t o  t h a t  described i n  Appendix A except f o r  the 

omission of the  thermocouples. There were tow bas ic  runs f o r  data  co l lec t ion .  

One with the lamp a t  an i n i t i a l  f i l l  pressure of 44.1 ps i .  This f irst  run w a s  

f o r  instrument checkout as w e l l  as t o  check the procedures f o r  the f i l l i n g  of 

t he  lamp with the high p u r i t y  xenon gas. 

minutes,  the  o r i g i n a l  charge of xenon was removed and a second charge a t  a much 

higher pressure was f i l l e d  i n t o  the lamp. 

and increased i n  approximately 1 KW s t eps  u n t i l  the  power l e v e l  of 14 KW vas 
observed. A t  t h i s  point,  high speed motion p ic tures  of the a r c  was made t o  

observe the s t a b i l i t y  c h a r a c t e r i s t i c s  of the a rc  as w e l l  a s  record the  f a i l u r e  

of the a r c  anode i f  it were t o  happen while the lamp,was being run. From 1 4  KW 

t o  21.42 KW the  power was increased while the  movies were continued t o  be made. 

A t  20 KW, the  acoust ic  de tec tor  f i r s t  reg is te red  a sound which could have been 

boi l ing .  It was periodic and seemed t o  follow the  occasional anode a r c  f o o t  

wandering. 

Lamp #1 (1968) w a s  t he  f i rs t  lamp successful ly  constructed 

4- 

After the lamp was run f o r  a f e w  

The second run was s t a r t e d  a t  6.66 KW 



Qui te  suddenly molten b a l l s  appeared on the  anode surface.  The condition 

appeared t o  be worsening with t i m e ,  bu t  no conclusive evidence of t rue  surface 

melting could be obtained. With the camera on high speed, the cur ren t  w a s  

increased t o  470 amps, 45.6 v o l t s  (21.43 KW) and held a t  t h a t  l e v e l  t o  determine 

i f  evidence of melting occurred. The b a l l s  of molten mater ia l  seemed t o  increase 

i n  density,  b u t  were more c h a r a c t e r i s t i c  of cathode residue than molten copper. 

A t  any rate, the  presence of t h i s  mater ia l  made it extremely d i f f i c u l t  t o  de t e t -  

mine the exac t  point  where melting occurred, i f  it occurred a t  a l l .  I n  the 

absence of da ta  from the narrow band microradiometer, it was determined t h a t  the 

run should be discontinued f o r  lack of r e l i a b l e  melting data .  

The next lamp which was t e s t e d  was ac tua l ly  the same lamp as i n  the f i rs t  runs 

a s  l i s t ed  i n  Table B-1  through B-3. However, the same procedure was followed 

i n  the pressur iza t ion  o f  the  high pu r i ty  xenon as was i n  the case of  the anode 

with the thermocouples. 

Appendix Tables B-4 through €3-6. 
Figures B-1 through B-12. 

This data  i s  l i s t e d  as Lamp #l (1969) on the  top of 

It i s  t h i s  data  which a re  p lo t t ed  i n  the 

Tests on t h i s  lamp were conducted almost exac t ly  one year af ter  Lamp #l (1968). 
Following the development of the method of attachment of the embedded thermo- 

couples (as described i n  Appendix A ) ,  an anode assembly with .O92 s h e l l  thick-  

ness was fabr ica ted .  Although four  thermocouples were i n s t a l l e d ,  a t  the time 

of f i n a l  assembly, only three thermocouples were operat ional .  It was t h i s  

second set  o f  da ta  co l l ec t ion  which the paper a t tached as Appendix A i s  making 

reference to .  This da ta  i s  l i s t e d  i n  the l as t  Chree rows of Appendix Tables 

B-4, B-6, and B-7 as Lamp #2* 

within the anode cooling passage a s  the f i r s t  lamp i n  addi t ion  t o  the  thermo- 

couples. 

i t s  f a i l u r e .  

This lamp contained the same pressure po r t  system 

However, only three  data  points were obtained on t h i s  anode p r i o r  t o  



V I 1  msuLm 

I n  general ,  the  r e s u l t s  w i l l  be shown i n  the at tached tab les  and f igu res  and 

only the most general  comments w i l l  be made. 

programs warrants the more de t a i l ed  ana lys i s ,  it w i l l  a l so  include the da ta  

gathered here.  

If a f u r t h e r  continuation of the  

Table B-1  tabula tes  the voltage and cur ren t  f o r  the Lamp #1 (1968) which w a s  the 

f i r s t  t o  have the pressure pickup within the anode water flow. The envelope 

temperature, xenon pressure and a r e l a t i v e  measurement of the i n t e n s i t y  are a l s o  

tabulated.  

Table B-2 l i s t s  f o r  the same run of the Lamp #1 (1968) the anode flow r a t e  i n  

gal lon per minute, the i n l e t  and o u t l e t  temperature a s  w e l l  a s  the difference 

from these values,  the power absorbed within the  anode water was ca lcu la ted  

as well as  the normalized power, i . e .  , the  r a t i o  of the power absorbed i n  the 

water t o  the t o t a l  e l e c t r i c a l  power del ivered t o  the lamp. 

Table B-3 l i s t s  the f lange temperature as measured with a thermocouple 

a t tached to  the  anode f lange.  The three pressure transducers were connected 

i n  such a way t o  record the  i n l e t  pressure t o  the near t i p  of the anode, the 

pressure a t  a hydrophone a l s o  near the  t i p  of the anode and the pressure 

d i f f e r e n t i a l  from the i n l e t  t o  the o u t l e t  again i n  the irricinity of the anode 

t i p .  Also, l i s t e d  i s  the cathode flow rate as  w e l l  as the cathode i n l e t  and 

back water pressure values. 

Table B-4 l i s ts  the same values f o r  the Lamp #l (1969) which was the same lamp 

a s  tabulated i n  Tables B-1 t o  B-3 as w e l l  a s  the Lamp #2 which had the  three 

thermocouples. However, s i x  runs were made t h i s  t i m e  with four  f o r  the purpose 

of data  co l lec t ing .  The approach w a s  t o  increase the hea t  f l u x  i n t o  the anode 

(by decreasing the flow rate of the anode coolant)  u n t i l  the  lamp f a i l e d .  The 

purpose was t o  determine the  ac tua l  point  of f a i l u r e  and t o  note any ind ica tors  

which may l e a d  t o  a warning system i n  fu tu re  lamps. This t ab le  l i s ts  the same 

propert ies  as t h a t  i n  Table B-1. 



Table B-5 l is ts  the ‘anode water flow r a t e ,  the temperature d i f fe rence  f o r  the 

water flowing through the anode, and the calculated power absorbed within the 

water as w e l l  as the normalized power on a per input  k i lowat t  bas i s .  

the  power rad ia ted  i s  estimated on a b a s i s  t h a t  exac t ly  9 s te rad ians  of the t o t a l  

4 v s te rad ians  through the quartz envelope and not absorbed by e i t h e r  the 

electrodes or the quartz  ( t h i s  value i s  probably good for most appl icatons,  

p a r t i c u l a r l y  around the  38 or 20 KW range, however, as the power goes up, the 

e f f i c i ency  changes and the  use of the value i n  the 30 degree cone centered a t  

the normal probably needs some correction. (This can be seen by t o t a l i n g  the 

power i n  Run a t  da ta  point  #7 which would ind ica te  10% t o t a l  power f o r  the 

system which does not include the 7 t o  10 percent l o s s  i n  the cathode heat ing) .  

However, f o r  comparative number, the r e l a t i v e  value i s  acceptable. The normalized 

values are on a per k i lowa t t  bas i s .  

Additionally,  

Table €3-6 l is ts  the pressure d i f f e r e n t i a l  on the i n l e t  and back pressure for the 

anode and the cathode a s  measured a t  the flange. Three water pressures are 

measured a t  the  anode t i p ,  one a t  a pos i t ion  0.594 inch upstream of the t i p ,  one 

a t  the t i p  and a t h i r d  a t  the  same dis tance downstream. 

Table B-7 g ives  the thermocouple readings for the three thermocouples located 

within the  anode s h e l l .  %e values a re  i n  degrees centigrade and the  loca t ion  

of the thermocouples are as follows: 
the anode s h e l l  as measured from the cooling water s ide  and was centered on 

the ax i s  of the  electrodes.  

anode s h e l l  a s  measured from the cooling water s ide  and 0.200 inch o f f  the 

electrode a x i s  a t  r i g h t  angles t o  the  d i r ec t ion  of  coolant flow. 

inch from the e x t e r i o r  of the  anode as measured from the  a rc  (xenon) s ide  and 

was 0.200 o f f  the  electrode a x i s  i n  the d i r ec t ion  of the coolant flow. 

#2 was 0.020 inch from the i n t e r i o r  of 

#3 was a l so  0.020 inch from the i n t e r i o r  of the  

#4 w a s  0.020 

Figure B-1 i s  a composite of the voltage cur ren t  and power f o r  the Lamp #l as  

run i n  1969 from the data  i n  Table B-4. 



Figure B-2 i s  the composite of the four  runs on the envelope temperature as a 

funct ion of  lamp power as measured with the infrascope. 

Figure B-3 i s  the xenon pressure f o r  the Lamp #1 which shows a c lose  cor re la -  

t i o n  between the runs number 3 and 5 as wel l  as 2 and 7. However, no cor re la -  

t i o n  between the two sets. 

Figure B-4 shows the i n t e n s i t y  over the 30 degree band centered normal t o  the 

e lec t rodes  axis. One should note the degrees i n  the i n t e n s i t y  from one 

successive run t o  the next  where chronologically the runs were i n  the order  2, 

3, 5, and 7. There may be some co r re l a t ion  with the relative t i m e  of the run 

a t  the l i f e  of the lamp. However, probably not  with the d i f f e r i n g  flow rates 

which the d i f f e r e n t  runs a c t u a l l y  depic t .  

Figure B-5 - t h i s  depic t s  the flow rate of the  various runs f o r  the  d i f f e r e n t  

power levels. While the water flow rate was se t  a t  the onset  of the  operat ion 

o f  the lamp, when the power was increased the flow rate had a tendency t o  

increase when the lamp power was reduced before  shutdown (not  shown), the water 

flow rate had a tendency t o  r e tu rn  t o  the o r i g i n a l  value set  p r i o r  t o  the lamp 

operations.  I n  fu tu re  runs,  the s e n s i t i v i t y  of  the flow measurement must be 

increased as the power i n t o  the anode coolant  i s  d i r e c t l y  dependent on the  

precis ion of the measurement. 

Figure B-6 - the  water temperature d i f f e r e n t i a l  from the anode i n l e t  t o  the 

o u t l e t  was measured by a system of three thermocouples i n  the i n l e t  and three  

thermocouples i n  the o u t l e t  l i n e s  of the anode flow l i n e s  and the d i f fe rence  

was measured e l e c t r i c a l l y .  

Figure 13-7 shows the r e l a t i o n s h i p  between the power absorbed with the  input  

power as a funct ion of  the various runs. The power absorbed was ca lcu la ted  

from the product of the thermal capaci ty  of the water, the flow rate and the 

measured increase i n  the  temperature of  the water. 



Figure B-8 i s  a normalization of the preceding curves where the calculated value 

of power absorbed i n t o  the water was divided by the power input  t o  the  lamp. 

The un i t s  are thus k i lowat t s  absorbed per k i lowat t  incident .  One can see the  

range i s  between 28 t o  38 percent absorbed. 

Figure B-9 is  the  est imat ion of the power rad ia ted  i n  k i lowat t s  with the follow- 

ing assumptions: the i n t e n s i t y  averaged over the range from 75 t o  lo5 degrees 

i s  similar t o  o ther  lamps t e s t e d  and sunmed over the complete range, %hat the 

t o t a l  s o l i d  angle i n t o  which the lamp rad ia t e s  is  nine s teradians,  the  view 

angle of the de tec tor  i s  not  g r e a t l y  a f f ec t ed  when the lamp i s  operated a t  the 

product of nine s te rad ians  times the in t ens i ty .  I n  the following paragraph, one 

can see how r e a l i s t i c  the assumptions can be.  

Figure B-10 - t h i s  i s  the normalization of the rad ia ted  power by the incident  

power l e v e l  t o  the lamp. Here, a s  discussed e a r l i e r ,  one can see more dramati- 

c a l l y  t h a t  the percentage of  power radiated,  i .e.,  e f f i c i ency  of the lamp, 

increases  with increase i n  power. Nominally, the power rad ia ted  goes from the 

low 50 t o  low 60 percent level as  the power of the lamp increases  from 10 k i l o -  

watts t o  28 ki lowat t s .  (Again, the l a s t  point  i n  the run #;! may w e l l  be ou t  of 

bounds as the t o t a l  energy for t h a t  one case, when added t o  the  known power, 

absorbed i n  the water and the assumed 7 t o  10% i n  the cathode cooling would t o t a l  

more than 100 percent.  

Figure B-11 i s  a r e l a t i v e l y  l'busy'' graph, i n  t h a t  it contains a l l  the  d a t a  on 

the water pressure probes within the anode region f o r  a l l  four  runs a t  a l l  power 

l eve l s .  However, s ince  no attempt a t  f u r t h e r  reducing t h i s  data  o r  showing i t s  
relevance t o  the o ther  parameters by e i t h e r  ca lcu la t ion  or similar means, the 

graphical  dependance show many of the  genera l iza t ions  which could be drawn. 

Figure B-12a through 12g i s  a set of po lar  d i s t r i b u t i o n  curves f o r  the Lamp #1 
(1969) run number 3. 
a function of polar  angle (zero degrees corresponds to the anode and the 180 

degrees i n  the d i rec t ion  of the cathode. The ordinate  watts per  s te rad ian  

only appl ies  t o  the curves p lo t ted  f o r  the de tec tor  marked DR-2. 

The p lo t s  are r ad ian t  i n t e n s i t y  i n  watts per s te rad ian  as 

Where the sca le  



i s  marked with a 5 mvldiv, a f a c t o r  of two i s  required t o  read the i n t e n s i t y  

d i r e c t l y  of f  the  ordinate .  

and a re  f o r  r e l a t i v e  changes only. Due t o  the spec t r a l  response d i f fe rences  

between the two de tec tors  and the d i f f e r e n t  time response, the two curves can 

be used t o  d e t e c t  s l i g h t  changes i n  the  de tec t ion  technique or other  character-  

i s t i c s  such as, temporal response of the polar  scan arm i f  the scan is  made too 

fast. 

The s o l a r  c e l l  readings are not f o r  absolute  values 

Figure B-13 i s  a photograph of the Lamp #l (1969) immediately a f t e r  shutdown 

after run when the power was shut  o f f  due t o  a small hole appearing i n  the anode 

t i p .  The lamp envelope f i l l e d  with water u n t i l  the pressure within the envelope 

came t o  equilibrium with the xenon pressure. 

Figure B-14 shows a close-up p ic ture  of the anode of Lamp #l showing the hole 

i n  the anode where the e l ec t ron  beam of the  a rc  d r i l l e d  a passage through the 

copper s h e l l .  

Figure B-15 shows the close-up p ic ture  of the anode of Lamp #2 (which had the 

thermocouples within the s h e l l .  This lamp was a l s o  shut  down when a small hole 

appeared on the surface of the anode. The hole did not  extend through the 

s h e l l  and therefore  no water was present within the lamp envelope. However, the 

thermocouple leads  did ind ica t e  the water had passed from the high pressure 

cooling channel within the anode i n t o  the a i r  cavi ty  which contained the thermo- 

couple leads and prevented any f u r t h e r  t e s t i n g  of t h i s  lamp. 



V I 1 1  CONCLUSIONS 

The method of embedding thermocouples within a copper anode s h e l l  has been 

perfected f o r  a t  l e a s t  three cases,  and one anode underwent bo th  ca l ib ra t ion  

tes t  up t o  600 degrees centigrade and was measuring temperatures i n  excess of 

200 degrees centigrade when fa i lure  occurred i n  the anode. The time response 

of the thermocouples was on the order  of a f e w  hundred mill iseconds.  A l a rge  

quant i ty  of da ta  and a systematic approach of da ta  co l lec t ion  and evaluat ion 

has been developed which would be of g r e a t  value i f  fu tu re  work were t o  be 

pursued i n  t h i s  area.  

Although preparations were made f o r  the a n a l y t i c a l  treatment of  the temperature 

da ta  within the  anode, no attempt was made t o  analyze the l imi ted  da ta  taken 

on the b r i e f  period of the Lamp #2. 
would be appl ied to any fu tu re  e f f o r t  where s i g n i f i c a n t  quan t i t i e s  of da ta  were 

forthcoming. 

These techniques previously developed 

For the lamp which had the water pressure probes and no thermocouples the 

following conclusions can be made : 

a. 

b .  

C .  

a. 

The xenon pressure within the  lamp behaves as shown i n  Figure B-3. 

The envelope temperature a t  the maximum radius  behaves as  shown 

i n  Figure B-2* 

A decrease i n  the power absorbed i n  the anode cooling water and 

the power rad ia ted  decreased with t i m e  as the  lamp was run. No 

explanation a t  present  e x i s t s  f o r  t h i s  behavior. 

Although the lamp was in t en t iona l ly  run t o  the point  of f a i l u r e  

by constant ly  decreasing the coolant flow rate, the lamp exhibi ted 

much g r e a t e r  cooling capaci ty  than o r t g i n a l l y  estimated. 

could ind ica te  t h a t  the p o s s i b i l i t y  of higher power lamps using 

t h i s  type of  cooling may not  be much pas t  the present s t a t e  of 

the art .  

This 



IX FdZCOMMENDATTONS 

More work along the o r i g i n a l  l i n e  of  the Statement of Work continues with 

empphasis on the  incorporation of instrumentation technfques which w i l l  allow 

f o r  the warning of impending fa i lure  of the  lamp during operation. Also, the 

work should continue t o  determine which charac te r i s  t i c s  optimize higher power 

lamps operat ion a t  the present  cooling rates with extended l i f e  a 
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INTRODUCTION 

An experimental program has been underway 
for over three years on the understanding of 
the operation of 20-30 KW xenon short  a r c  lamps 
with emphasis on the anodes and t h e i r  heat 
transfer. The purpose of the program was to  
develop diagnostic techniques .*,hich would y i e ld  
information of the l imi t a t ions  o f  the lamps f o r  
various power l eve l s  as a function of design 
r e s t r a i n t s  and operational parameters. ( R e f .  
1 & 2.) 
t h a t  the lamps be of a water cooled variety.  
A t  the present time anodes a re  being t e s t ed  
with varying heat exchange thicknesses t o  
e s t ab l i sh  the recommended operational l i m i t s  
f o r  a given water flow, f i l l  pressure of the 
xenon gas and a rc  s t a b i l i t y ,  which w i l l  y ie ld  
the longest l i f e .  

In  the smaller lamps e.g. ,  lower wattage 
with radiat ion cooling, the l i f e  expectancy 
ranges from one t o  two thousand hours. How- 
ever,  i n  the 20 KW va r i e ty  only three lamps, a s  
of the writ ing of t h i s  paper, have exceeded 
1000 hours and one of these j u s t b a r e l y .  

The power range i n  question requires 

Although the lamps are, i n  general, warranted 
fo r  four hundred hours operation, a more 
r e a l i s t i c  figure f o r  operational l i f e  would 
be more l i k e  two hundred and f i f t y  hours and a 
mean l i f e  probable more l i k e  one hundred and 
f i f t y  hours. 

There a re  two basic  types of anodes used 
i n  the high power lamps. F i r s t ,  the use of 
high melting point  materials which have a high 
operating temperature e.g., tungsten o r  
molybedium. Second, the use of copper which 
has a high thermal conductivity which allows 
the absorbed energy t o  be more e a s i l y  t ransferred 
t o  a heat  exchange f l u i d  e.g.,water i n  most 
s o l a r  simulators and ant i f reezes  i n  some of the 
airborne or mil i t a ry  all climate uses. 
type has i t s  advantages depending on the u l t i -  
mate use of the lamp. In  general ,  the tungsten 
lamp has a tendancy t o  darken with time due to  
the continual deposition of tungsten vapor 
within the envelope from the high temperature 
anode which w i l l  vaporize and eventually be 
deposited on the cooler walls of the lamp. 
Techniques are presently being developed which 
w i l l  minimize the deposition on the quartz and 
se l ec t ive ly  co l l ec t  any vapors on the cooler 
anode support. The mode of f a i l u r e  of  t h i s  
type of lamps i s  e i t h e r  the gradual degradation 
of the lamp output a s  a function of lamp l i f e  
or the f a i l u r e  of the anode due t o  cracking of 
the b r i t t l e  tungsten from the constant tempera- 
ture  cycling. 

Each 

The copper anode, due t o  i t s  operating a t  
a much lower temperature, has less degradation 
with time i n  the l i g h t  intensi ty .  However, 
three (3) modes of f a i l u r e  are noted with t h i s  
lamp : 
1. The g rea t e s t  number of f a i lu re s  is due 
t o  the blockage of the water cooling channel 
which i s  d i r e c t l y  beneath the a r c  column and 
experiencing the g rea t e s t  heat flux. This 
blockage i s  caused by one of two mechanisms 
e i t h e r  the obstruction of the flow by the 
gradual bu i ld  up of contaminants i n  the coolant; 
or the collapse of the th in  copper s h e l l  normally 
a tenth of an inch i n  thickness - due t o  the 
imbalance of pressure between the xenon gas cf 
ten atmospheres pressure and the water pressure 
inside the anode. 

2. When the electron column i n  the a rc  i s  too 
confined or the heat t r ans fe r  i s  not su f f i c i en t  
t o  remove the peak load a t  the anode t i p  the 
a rc  a c t s  a s  a d r i l l  and bores through t o  the 
cooling passage. It can be noted here t h a t  t h i s  
type o f  f a i l u r e  does not r e s u l t  i n  a catastrophic 
explosion a s  might be f i r s t  expected, bu t  a f t e r  
the xenon pressure i s  f i rs t  relieved in to  the 
water stream and the water p a r t i a l l y  f i l l s  the 
hot (500 - 600'~) quartz envelope. The a r c  i s  
almost immediately extinguished and the lamp 
co l l ec t s  only a small amount of water. 

3. An ever increasing mode of lamp f a i l u r e  i s  
the gradual loss o f  pressure within the enve- 
lope. Some examples are the xenon leaking 
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through microcracks within the tungsten anode, 
or through mechanical s ea l s  or bellows. 

A t  the t i m e  of the writ ing of t h i s  paper, 
only l lmited data has been taken on the f irst  
anode. This included high speed motion picture  
techniques for, arc temporal s t a b i l i t y  and 
pressure data i n  the xenon gas and w a t e r  flow 
channels. The second anode has undergone 
extensive development f o r  the incorporation 
of thermocouples within the anode w a l l  between 
the a rc  and the coolant. 

THEORFTICAL BASIS 

Before expounding too far on the subject 
matter, it should be pointed out  t h a t  many 
other  techniques have been investigated and a t  
present others a re  s t i l l  underway t o  replace 
the short  a r c  lamp. Be l i t e r a t u r e  i s  f i l l e d  
with e x p e r h e n t a l  apparatus which fulf i l l  many 
of the requirements f o r  a radiat ion source and 
i n  general only possess one or two l imi t a t ions  
from being the solut ion t o  all source requesters. 
(Ref .  3 - 7). 
a t  t h i s  tim, the sho r t  a r c  lamp appears t o  be 
the most r e l i ab le  source f o r  the energy range 
i n  question, i.e., 20 t o  40 KW. 

development of an anode which w i l l  withstand 
the extremely high thermal environment within 
a sealed shor t  a r c  xenon lamp. The short  a r c  
lamp is typif ied by t h a t  shown i n  Figure 1. 
( R e f .  8 & 9) .  
i n t e rna l ly  and normally consis ts  of a tungsten 
t i p  which has a very high operating temperature. 
?he anode i s  separated from the cathode nomi- 
n a l l y  by 10 or 14 m. It is  t h i s  anode which 

However, i n  the f i n a l  analysis  - 

Icwo avenues have been followed i n  the 

The cathode i s  watercooled 

the present study has investigated and in s t ru -  
mented t o  determine the physical parameter while 
the lamp is operating. 
the heat  loads per u n i t  area a re  among the 
highest  obtainable f o r  apparatus which operate 
continuous i n  excess of a f e w  seconds. A 
comparison of the various heat  loads encountered 
i n  the various industr ies  i s  i n  reference 10 
and 11. 

A s  w i l l  be shown l a t e r ,  

Numerical solutions were generated by the 
Boeing Company f o r  the energy p ro f i l e  a n t i c i -  
pated within the electrode spacing. Detailed 
discussions of t h i s  are i n  references12 and 13 
a s  w e l l  as pr ivate  communication with Boeing 
s c i e n t i s t ,  references 14, 15, and 16. Figure 
2 shows the typ ica l  heat f l u x  normalized _"or 
the lamp operating power as a function of 
r a d i a l  posi t ion of the anode. 

Other programs of research i n t o  the 
understanding of lamp operation and f a i l u r e  
a re  a lso  underway and are included here by 
reference. (Reference 17 - 21). 

It w a s  the i n t e n t  of the program t o  
ve r i fy  the ana ly t i ca l  values on the thermal 
input t o  the anode and t o  u t i l i z e  the combined 
empirical and ana ly t i ca l  model t o  design anode 
thickness and operating condition f o r  optimum 
use. I n  the following sect ion the apparatus 
w i l l  be described and the approach to obtain 
the required data. 



d. Micro brightness d i s t r ibu t ion  within 

e. Specif ic  wavelengths f o r  observing 

the a r c  

l i n e  spectra  associated with vaporization 
of the anode material 

f .  Radiometrically observing the temperature 
of the various components of the lamp. 

I1 Water Characterist ics 

The cha rac t e r i s t i c s  of the coolant water 
has been shown t o  be very important i n  the 
t e s t ing  and operation of the high pressure 
xenon lamps so pa r t i cu la r  care was taken t o  
observe the following properites of the coolant: 

a. Inlet and o u t l e t  temperature 

b. Inlet and o u t l e t  pressure 

c. Maximum pa r t i c l e  s i ze  of  contaminate 

d. E l e c t r i c a l  properties,  i .e . ,  conductivity 

e. Flow rate 

i n  the coolant 

and the Ph. 

.d5 . io  .is .20 

RADIUS FROM ANODE CENTER (INCHES) 

NORMALIZED HEAT FLUX AS A FUNCTION OF POSITION 

FIGURE 2 
APPARATUS 

In order t o  understand the operation of 
the high power a r c  lamp, and to  perform 
diagnostics f o r  analysis  of the var iables  it was 
necessary t o  construct special ly  instrumented 
lamps. 
could be b u i l t  i n t o  the lamp anode and envelope 
while s t i l l  maintalning the same bas i c  construc- 
t i on  techniques. Thus , the apparatus consisted 
of special  lamps and laboratory measuring 
equipment. The basic  types of instrumentation 
and the e f f e c t s  which were observed can be 
c l a s s i f i ed  in to  f i v e  categories: 

I Radiant Flux Measurement 

I1 Water Quan t i t i e s  and Q u a l i t i e s  

In t h i s  manner some instrumentation 

I11 Xenon Gas Conditions 

I V  Electrode Propert ies  and conditions 

V Envelope and Associated Hardware 

Tt w i l l  be obvious from the discussion 
t h a t  many properties tes ted give meaningful 
data  which applies t o  more than one area.  

I Radiant Flux Measurernent 

Radiant f l ux  measurements were used t o  
determine : 

a .  

b .  Total or integrated in t ens i ty  

c. Polar d i s t r ibu t ion  of radiat ion 

Spectral  d i s t r ibu t ion  of the radiat ion 

I11 Xenon Gas Properties 

The qua l i ty  of the i n i t i a l  charge of the 
xenon gas w a s  known p r io r  t o  f i l l i n g  the cleaned, 
degassed, vacuum pumped lamp. The lamp 
envelope was heated p r io r  t o  the addition of 
the xenon t o  allow vacuum degassing and surface 
contaminates. 
f i l l ing system were a l so  degassed and dried 
p r i o r  t o  use of the xenon. 
of the lamp the following properties of the gas 
were observed: 

Other components i n  the gas 

During the operation 

a. 

b. 

c.  

The e f f e c t s  of contaminates by spectral  
l i n e  emission 

Xenon pressure by a transducer 

Rate of gas flow within the envelope 
a s  estimated by the use of high s s e d  
photography. 

IV Electrode Properties 

The anode and cathode were instrurnented t o  
the g rea t e s t  possible extent.  
pressure and temperature w e r e  observed i n  the 
cathode only i n  the t o t a l  or integrated e f f e c t  
throughout the cathode, however the anode used 
many ports  and thermocouples in t e rna l ly  f o r  
precise and quick response data. The major 
items observed were: 

a. Temperature of the anode i n  a t  l e a s t  
three posit ions within the outer she l l .  

b. A thermistor a t  the base of the thermo- 
couple connections read the temperature 
a t  the junctions 

The water 

c. Voltage across lamp only 
d. 

e. 
Current through the anode and cathode 

Color temperature and the getter-  of 
e i t h e r  the special  cathode material  or 
g e t t e r  was op t i ca l ly  observed 



f .  

g. 

h. 

i. 

3 .  

k.  

V 

Pressure within the water flow channel 
i n  three pos?tions, one d i r e c t l y  a t  the 
t i p  of the anode and one on e i t h e r  s ide  
of the flow 

An acoust ical  probe was i n s t a l l e d  near 
the t i p  of the anode within the water 
channel t o  record the onset of nucleate 
boi l ing 

Arc s t a b i l i t y  was observed both visual ly ,  
by projected imagery, and with high 
speed f i l m .  

The formation of the molten material  on 
the electrodes was v i sua l ly  observed as  
w e l l  a s  any massive movement of material  
from the cathode t o  the anode 

Arc wander, detachment, and attachment 
was observed during power excursions 

Arc s i ze  and posit ion w a s  measured by a 
projection of the image technique 

Lamp Character is t ics  

!€be quartz envelopes used during the tes t  
w e r e  observed f o r  i n t e rna l  stresses upon r ece ip t  
and were monitored per iodical ly  t o  insure no 
stresses were developed during operation. The 
qua l i t y  of the quartz i s  extremely high with no 
v i s i b l e  marks, stria, o r  lamination within the 
material .  No  bubbles are present. Elaborate 
precautions were taken t o  avoid contamination 
of  the envelopes and extensive cleaning opera- 
t ions were used p r io r  t o  assembly. The following 
parameters were monitored on the envelope and 
associated hardware: 

a. A s t r a i n  gauge was cemented d i r e c t l y  
upon the quartz envelope i n  the radiat ion 
shadow of  the anode 

b. A radiometer w a s  used t o  measure the 
effect ive temperature of the quartz not 
i n  the shadow of the electrodes 

temperature a t  the seals of the envelope 
t o  the flanges 

c. A thermocouple w a s  use& t o  measure the 

PROCEDURF: 

A f t e r  assembly of the spec ia l ly  instrumented 
lamp and set up of the laboratory test equip- 
ment, the test procedure was t o  simultaneously 
measure a l l  of the above quan t i t i e s  while the 
lamp was running. The first lamp w a s  s t a r t ed  
a t  a minimdl wattage (approximately 10 ki lowatts)  
and allowed t o  e s t a b l i s h  equilibrium. 
col lect ion was Inspected t o  note changes from 
the preceedirg run and then the power was in -  
creased to the lamp. After a noticeable change 
i n  the a rc  p ro f i l e  or posit ion on the anode the 
a r c  would be photographed. 
repeated u n t i l  the anode or lamp suggest t h a t  a 
f a i l u r e  i s  immanent. For t h i s ,  a f a i l u r e  was 
defined as one of the following occurrences: 

The data  

The procedure is  

1. 

2. Other physical indicators such as water 

The t i p  of the anode shows molten copper 
of a predetermined s ize .  

temperature, pressure, xenon pressure, 
or lamp temperature a t  e i t h e r  envelope 
or seals  show variat ions which cannot 
be explained a s  normal. 

3. The electron beam-core of the a rc  causes 
a puncture t o  develop i n  the anode. 

4. The f i l m  boi l ing a t  the in t e rna l  anode 
surface approaches the uncontrolled 
point where punch-through is  immanent. 

However numerous d i f f i c u l t i e s  were encountered 
i n  the fabricat ion of the anodes and consequently 
the majority of the program time and funds w e r e  
expended upon resolving d i f f i c u l t i e s  which are 
reported herein. I n  addition t o  the ac tua l  
fabr icat ion other typical  d i f f i c u l t i e s  were 
a l s o  present e.g. , incompatibil i ty of the 
various s ignals  with the recording equipment, 
annoying and intermit tent  vacuum leak detectZion 
detection during the assembly phases of the lamp. 

DISCUSSION 

Component Fabrication 

The g rea t e s t  d i f f i c u l t y  w a s  encountered i n  
the fabricat ion of the instrumented anode. This 
discussion centers on the work i n  t h i s  area.  
The r a the r  routine operations and assembly 
s t eps  a re  summarized i n  the remainder of the 
paper. 

Figure 3 shows the cross sect ion of the 
water cooled anode a s  it was conceived over 
two years ago. The basic  design i s  s imilar  
and copied after the R i i s e  anode which w a s  
designed f o r  the s o l a r  simulator lamp used by 
the Jet  Propulsion Laboratory. A descr ipt ion 
of t h i s  anode i s  induded  i n  references 20 and 
21. The instrumentation which has been adaed 
t o  the Riise anode w a s  the purpose of t h i s  
program, with an ult imate aim of providing a 
technique which would give an advance warning 
t o  the ult imate f a i l u r e  of the lamp. Hope- 
f u l l y  such a warning would be some rad ica l  or 
predictable change i n  one o r  more of the 
physical parameters measured. 

The design concept f o r  the anode cooling 
involves a flow of high pressure, high veloci ty  
water enter ing a constricting channel which 
would cause the water veloci ty  t o  increase t o  
a maximum value a t  the very t i p  of the 
anode. 
and the water would be returned t o  the heat 
exchangers. 

From t h a t  point the channel would widen 

Originally,  the anodes were made from a 
s h e l l  over an inner machined surface.  The 
outer  s h e l l  was fabricated using th in  walled 
copper which was pressure formed t o  a machined 
mandrel. This concept was modified t o  include 
instrumentation within each of the components. 
The inner component has a ca re fu l ly  machined 
surface which controls t h i s  flow of the coolant 
while measuring the l o c a l  pressure var ia t ions.  
The outer  s h e l l  i s  electrodeposited over a 
mandrel with thermocouples a t  varying depth 
and gosi t ion t o  determine thermal gradients 
l oca l ly .  
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FIGURE 3 

Only one of  the three pressure ports  are 
shown i n  f igure 3, however, it i s  typ ica l  of 
the other  two which includes one f o r  an 
acoust ical  probe. 
the outer s h e l l  represents the thermocouples 
which w e r e  i n s t a l l e d  in the she l l .  Tbese 
thermocouples w e r e  enclosed within a nickel 
sheath wifh an outside diarneter of 0.007 inch 
( therein l ies  the d i f f i c u l t y .  ) 

The dotted l i n e s  within 

Near the t i p  the anode assembly consis ts  
of two major components. 
component has been named the cons t r i c to r  for  
i t s  act ion i n  the flow of the cooling water. 
This part contains the water passages, the 
pressure ports ,  the tie-down posts f o r  the 
thermocouple junctions,  a thermistor f o r  the 
measurement of the thermocouples junction 
temperature, and the outer  radius t o  which the 
gas seals are made. The other  component is  a 
t h i n  s h e l l  of electrodeposited oxygen-free, 
high puri ty  copper. !Phe outer s h e l l  i s  electro-  
formed on a mandrel t o  a thickness of 0.150 inch 
and then machined t o  0.014 inch a t  the t i p  and 
increasing i n  thickness t o  0 . 0 6  inch back on 
the s h e l l  as shown in Figure 4. The anode i s  
then cut with four  grooves t o  allow the place- 
ment of  fou r  thermocouples. 

An i n t e r n a l  

ELECTROFORMED AND MACHINED ANODE S H E L L S  
WITH MANDREL 

FIGURE 4 

The thermocouple junctions a re  indexed t o  
the anode t i p  and the water flow channel i n l e t  
is a t  an angular posit ion of 0'. AU located 
within the 0.092 inch thickness copper w a l l .  
One thermocouple w a s  located a t  the anode t i p  
with the junction 0.014 inch from the (water 
flow) i n t e rna l  surface of tk she l l .  A second 
junction was t o  be a t  ,022 inch From the outer 
surface of the s h e l l  a l so  a t  the t i p ,  however 
one lead was broken during f i n a l  assenfdy. 
next thermocouple junction is located a t  0.014 
inch from the inner surface of the s h e l l  and 
0.100 inch from the t i p  i n  the direct ion of the 
water i n l e t .  The l a s t  thermocouple was located 
0.022 inch from the outer surface of the s h e l l  
(0.070 inch from the in t e rna l  surface) and 
0.100 inch fmm the anode t i p  i n  a direct ion 
9" from the th i rd  thermocouple i.e., a t  r i g h t  
angles t o  the water flow d i r ec t .  %e o r ig ina l  
i n t e n t  w a s  t o  locate  e igh t  thermocouples - four 
on each of two l aye r  and a t  45O spacing around 
the circumference. Also, the sptcing from 
the t i p  was t o  range from 0 t o  0.200 inch. 

The 

It was a t  t h i s  point i n  the program t h a t  
the f irst  g rea t  d i f f i c u l t y  was encountered. 
The attachment of the thermocouples was 
complicated by two factors ,  the s i ze  of the 
thermocouples was selected t o  be as small as 
possible t o  minimize the e f f e c t s  of thermal 
gradients within the th in  s h e l l  wall and thereby 
negating the whole experiment, and second the 
insuring of posi t ive and complete attachment 
of the thermocouple t o  the she l l .  

The two factors  were working against  one 
I n i t i a l l y  the another from the very start. 

thermocouples were t o  be attached by the use 
o f  furnace brazing. A lengthy program was 
unde?taken to determine the proper brazing 
compound, flux thermocouple material and an 
appropriate procedure t o  insure a sat isfactory 
bond. %TO vendors t r i e d  unsuccessfully t o  
a t t ach  the thermocouple and i n  desperation a 
vacuum furnace was constructed inhouse and 



numerous she l l s  were attempted, however, the 
r e s u l t s  were not  acceptable t o  proceed with 
the remainder of the anode fabrication. 
Figure 5 shows the vacuum furnace i n  which 
the anodes were fabr ica ted  and Figure 6 shows an 
anode which w a s  brazed with t h i s  technique, 
however, t h i s  thermocouple was attached with too 
much braze material ar.d the i n t e g r i t y  of the 
thermocouple w a s  not maintained. 
point the e l ec t ro l e s s  copper p la t ing  of the 
thermocouple on the  s h e l l  w a s  attampted b u t  

, the bond allowed the trapping of e l ec t ro ly t e  and 
voids were formed a t  the poirit of contact 
between the thermocouple and the anode she l l .  
This technique was  attempted on both the 
grooved she l l s  as well as she l l s  which were 
unscored. Figure 7 shows a photomicrograph 
(or ig ina l  X5O) where the thermocouple was 
positioned in a groove 

A t  t h i s  

A t  t h i s  point several  attempts were made 
a t  attaching the thermocouples t o  the s h e l l  
using an e lec t ropla t ing  technique which con- 
s i s t e d  of the following steps:  

a. Chemically cleaning the surface w i t h  
ac id  solutions 

b.  Activating the surface of both the s h e l l  
and the thermocouple sheath with a 
copper cyanide strike 

ANODE WITH BRAZE THERMOCOUPLES 

F I G U R E  6 
c. 

d. 

Bonding the thermocouples t o  the surface 
with adhesive over sho r t  lengths 

Electroplating a sma l l  amount of copper 
t o  hold the thermocouple i n  place 

Removing the adhestve both mechanically 
and chemically 

e. 

ANODE THERMOCOUPLE VACUUM BRAZING FURNACE 

FIGURE 5 

PHOTOMICROGRAPH ( X  50) ELECTROLESS 
PLATED THERMOCOUPLE 

FIGURE 7 



f .  Returning the anode i n t o  the copper 
sulfate electrodeposit ion bath until 
the required depth was overcoated on 
the thermocouple. 

A t  t h i s  point  the anode was subjected 
t o  a machining operation t o  turn down the s h e l l  
t o  the predetermined thickness. On two she l l s  
the thermocouple l eads  were e i t h e r  mechanically 
broken or l a t e r  encased within the subsequent 
electrodeposited copper l aye r s  and were l e f t  
useless.  Again, the approach was revaluated 
and determined t o  best of the a l t e rna t ives  
avai lable ,  t he rea f t e r  the assembly procedure 
was a l t e r e d  t o  allow for reduction i n  the 
handling of the anode assembly after the 
thermocouples w e r e  on the surface. 

Figure 8 shows the inner component of the 
anode assembly which contains the pressure 
po r t s  and the water passages. This cons t r i c to r  
w a s  d r i l l e d  and assembled with gold plated - 
insulated feedthroughs f o r  the thermocouple 
terminals. Then, the cons t r i c to r  was cemented 
within the previously machined outer  s h e l l  
(which has grooves c u t  f o r  the thermocouple 
bu t  a s  y e t  empty.) A t  t h i s  point the anode 
i s  attached t o  a f i x t u r e  which allows the 
connection of the terminals f o r  the plat ing 
operation and the process of the e l ec t ro -  
deposition of copper t o  a t t ach  the thermo- 
couple is repeated. The design of the terminal 
f i x t u r e  a l so  allowed the accurate measurement of 
the deposition of the copper as w e l l  as a f i x t u r e  
f o r  the necessary machining of the face and 
radius of the she l l .  A f t e r  the first l a y e r  of 
thermocouples were in place and the surface w a s  
machined t o  the necessary radius,  the whole 
process was repeated a second time and a secord 
l aye r  of thermocouples w e r e  encapsulated i n  
Place. Figure 9 shows the photomicrograph of a 

CUTAWAY VIEW O F  ANODE CONSTRICTOR SHOWING 
WATER PASSAGE,  PRESSURE TRANSDUCER PORTS 
AND COMPOUND R A D I I  FOR WATER FLOW CONTROL 

F I G U R E  8 

PHOTOMICROGRAPH ( X  50) ELECTRODEPOSITED 
N I C K E L  SHEATHED THERMOCOUPLE T O  

COPPER SUBSTRATE WITH GROOVE 

FIGURE 9 

test specimen where a 0.007 inch diameter 
nickel sheath containing a platinum-platinum 
rhodium thermocouple has been encapsulated 
within the surface of a OFHP copper substrate.  
Under selected illumination and etching condi- 
t ions the copper strike using the cyanide 
process and the copper su l f a t e  deposition can 
be distinguished. One of the thermocouple 
leads i s  v i s i b l e  within the nickel  sheath. 
The o r ig ina l  magnification of the photograph 
was X5O. 

After the second electrodeposit ion of 
copper takes place the assembly is  once again 
returned t o  the l a t h e  where it i s  turned down 
t o  the f i n a l  thickness minus 0.012 inches. 
The anode subassembly i s  then ready f o r  the 
i n s t a l l a t i o n  of the thermocouple leads,  water 
passages t o  the lamp flange, the acoust ical  
and pressure transducer l i nes ,  and a s igna l  
l i n e  t o  a thermistor located within the j u s t  
fabr icated anode assembly where the thermo- 
couples make a junction with the gold plated 
feedthroughs. Figure 10 shows the anode 
assembly j u s t  p r io r  'to f i n a l  encapsulation. 
This thermistor was added t o  the instrumenta- 
t i on  t o  measure the temperature a t  the feed- 
through flange. The in t e rna l  water l i n e s  a re  
epoxied i n  place t o  grooves provided for t ha t  
purpose. The outer stainless steel s h e l l  was 
then soldered i n  place. 

The completed anode assembly was then returned 
t o  the electroplat ing bath and a f i n a l  l aye r  of 
0.030 inch copper was plated over the whole 
assembly from the t i p  of the anode t o  the flange 
surface. Figure 11 shows the completed assembly 
after a f i n a l  machine cut  of 0.012 inch t o  give 
the precise length necessary t o  properly mate 
with the envelope and cathode assembly. Figure 
12 shows the quartz envelope and the mechanically 
sealed (O-ring) cathode assembly. Figure 13 
shows the same arrangement for the quartz enve- 
lope which has a graded g l a s s  seal t o  the cathode 
assembly. 



ANODE ASSEMBLY P R I O R  T O  F I N A L  ASSEMBLY 
AND ELECTRO DEPOS IT I NG 

FIGURE 10 

QUARTZ ENVELOPE WITH MECHANICALLY SEALED 
FLANGE T O  CATHODE 

F I G U R E  12 

ANODE ASSEMBLY WITH FLANGE AFTER F I N A L  
ELECTROFORM AND MACHINING 

FIGURE 11 

COMPONENT ASSEMBLY & ANCILLATORY SYSDDlS 

In addition t o  the anode assembly j u s t  
described, there are three other  assemblies 
and systems used namely: 

a. 

b .  Gas evacuation and pressurizing 

c. 

Anode in le t  and o u t l e t  temperature 
monitoring manifold 

system manifold 

Water conditioning system and heat 
exchanger 

QUARTZ ENVELOPE WITH GRADED GLASS SEALED 
FLANGE T O  CATHODE 

FIGURE 13 

The anode cooling water passes through a 
series of three thermocouples pr ior  t o  entering 
the anode and on the return t o  the heat 
exchanger again passes through a second series 
of three thermocouples and a difference s ignal  
is recorded which i s  proportional t o  the 
temperature d i f f e r e n t i a l  in the anode water. 
Figure 14 shows the two pipes in which the 
thermocouples are located. 
placed within a f e w  feet of the anode connection 
out of the d i r e c t  l i g h t  from the lamp. 

The assembly i s  

The xenon pressurization system for the 
first lamp is  as shown i n  Figure 15. 
second lamp tested,  an addi t ional  tee  was 
inser ted i n  the l i n e  t o  the stainless steel  

I n  the 



FIGURE 14 

XENON PRESSURIZATION SYSTEM 

FIGURE 15 



pressure vessels shown. The following 
description is  the method used on the second 
lamp and i s  e s sen t i a l ly  the same a s  the f i r s t  
except for the interplay of the various gas 
b o t t l e s  during f i l l i n g .  A helium leak detector/  
vacuum pump system was connected t o  the apparatus 
i n  the upper l e f t  of the figure.  The l i n e  a t  
the top of the f igu re  goes t o  the lamp pressure 
xenon f i l l  tube. The s teps  used i n  f i l l i n g  a 
previously clean and assembled envelope and 
anode/flange assembly are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 

lo. 

11. 

12. 

Evacuate the manifold system 

With the pump running, crack a l l  valves 
t o  remove any residual  contamination 

A f t e r  the lamp and manifold has returned 
t o  a hard vacuum, pump overnight t o  re- 
move any slow outgassing products 
absorbed within the envelope and in t e rna l  
components 
Heat lamp assembly with torch t o  
enchance any remaining outgassing - 
temperature l i m i t  on seal t o  150°F 

F i l l  lamp envelope t o  200 micron 
pressure 

Apply high voltage t o  glow discharge 
the lamp 

Pump xenon out of lamp 

Pressurize the lamp with the xenon from 
the s t a i d e s s  steel cylinders t o  
desired pressure 

Seal off system and run lamp f o r  b r i e f  
period a t  minimum power l e v e l  

Exhaust xenon t o  atmosphere (at  t h i s  
point the xenon could be cryogenically 
pumped back i n t o  one of the cylinders 
i f  desired t o  reclaim.) 

Evacuate system and ref i l l  lamp with 
high pu r i ty  xenon from addi t ional  
b o t t l e  attached t o  manifold (not 
shown) t o  desired pressure 

Seal off  manifold and lamp from pump 
!&e w a t e r  system i s  a closed loop system 

which can produce coolant with the following 
character is t ics :  

a. Maximum p a r t i c l e  s i z e  5 microns 

b. E l e c t r i c a l  con!luctivity 50 micromhos 

c. kbximum pressure 465 ps i a  

e. Inlet temperature maximum ~ O O F  

f .  Deionized t o  passivate ions present 

g. 

a. m i m u  flow 15 gpm 

The pressure head i n  the water system 
is evacuated and then f i l l e d  with helium 

Figure 16 shows the first lamp tested which 
uses the mechanical seals on both flanges. This 
lamp d id  not  have the thermocouple incorporated 
within the anode. Figure 17 shows the lamp 
mounted in the v e r t i c a l  posi t ion within the test 
cell. The test c e l l  has c i r cu la t ing  a i r  which 
i s  augmented by an exhaust fan however the 
circulat ion i n  the v fc in i ty  o f  the lamp i s  
e s sen t i a l ly  na tu ra l  convection. 

KESULZS AND CONCLUSIONS 

A t  the time of the wri t ing of t h i s  paper 
i n  l a t e  January 1970, the second anode within 
the mechanical sealed envelop had j u s t  com- 
pleted the glow discharge phase of cleaning 
the i n t e r i o r  of the lamp and was in an extended 
outgassing vacuum pumping f o r  the weekend. 
i s  ant ic ipated t h a t  by the time the paper is 
presented i n  April  t h a t  the lamp w i l l  have 
been successfully run over the ant ic ipated test 
program of var iable  power l eve l s ,  water flow 
rates and xenon f i l l  pressures t o  provide the 
necessary data f o r  correct  i n t e rp re t a t ion  of 
the heat t r ans fe r  for  t h i s  lamp. 

It 

The only t e s t  data which can be reported 
a t  t h i s  time comes from earlier tests on the 
f i r s t  lamp assembly. Although t h a t  lamp did 
not have the encapsulated thermocouples, the 
anode s h e l l  was electroformed. Pressure and 
temperature data w a s  obtained on the water 
system and lamp envelope. 

Figure 18 is  a projected view of the a r c  
on the f irst  anode with pressure instrumentation 
only. 
with the xenon pressure reading 1-56 psia,  and 
1.80 gpm flow with a 104 p s i  pressure drop 
from the f i r s t  t o  l as t  pressure proble within 
the water passage i n  the anode. The pressure 
a t  the t i p  of the anode water passage was 320 
psia.  
inlet t o  the o u t l e t  w a s  13.1°C.  

The photograph is  of the lamp a t  17.2 KW 

The temperature gradient  from the anode 

!&e reduction of the data obtained during 
the e a r l y  p a r t  of spring 1970 w i l l  be made 
avai lable  a t  the meeting and w i l l  be included 
i n  the concluding s l ides .  
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14  

15 

16 

17 

18 

POWER 

-- ....--I 
ow 

6.66 

9.20 

10.15 

u.82 

13 09 

14.1 

14-95 

16.4 

17.24 

18.13 

18. 13 

18.92 

20.11 

21.43 

18.3 

15.3 

12.2 

9.95 

VOLTAGE 

(VOLTS) 

33.3 . 
36.8 

37.9 

39.4 

40.3 

41.1 

41.6 

42.2 

43.1 

43.6 

43; 6 

44.0 

ENVXLOPE 

TEMP ( O C )  

140 

200 

215 

235 

255 

265 

275 

285 

295 

305 

310 

330 

345 

350 

320 

280 

255 

230 

c 

DATA FROIvI LAMP #I, (1968) 

IlVEI.LSi. i 

PHESS (PSI) j (VOLB) 
-- 

124 

136 

138 

140 

148 

150 

154 

156 

160 

164 

166 

158 

172 

176 

168 

160 

152 

144 

25 

34 

35.5 

39 

47 

49 

54 

55 

56 

55 
5 6 

56 

56 

56 

56 

+ 56 

47 

37 



d 

_I_ 

E IN 1 
Il?lilSTANT CHECKOU! 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12  

3-3 

14 

15 

16 

17 

18 

P O  WEK 

6.46 

9.20 

10.15 

11.82 

12.04 

13.09 

14.1 

14 95 

16.4 

17.24 

18.13 

18.92 

20.11 

21.43 

18.3 

15.3 

12.2 

9.95 

ANODE 
IJA'IIER FLOW 

- 

1.52 

1.56 

1.59 

1.64 

1.66 

1.72 

1.76 

1.76 

1.80 

1.80 

2.30 . 

2.27 

EMP. IN 

(OC 1 
-- - 
---.-_I_.-- 

29.1 

27.9 

27.6 

28.0 

.. 

28.5 

29.3 

29.6 

29.5 

30.2 

30.5 

30.5 

30.4 

TEMP. OUT 

("c 1 

> 

35 *5 

. 35'5 

36.2 

37.6 

38.6 

40.4 

40.8 

42.0 

43.3 

44.6 a 

41.6 

42.6 

6.4 

7.6 

8.6 

9.6 

10.1 

11.1 

11.2 

12.5 

13.1 

14.1 

11.1 

12.0 

\ TABLIE B-2 

DATA FROM LAMP #1 (1.968) 

KW INTJ 

. WATER 

2.56 

3.12 

3.61 

4.16 

4.43 

5.04 

5.20 

5.80 

6.22 

6.70 

7.18 

. '. 

Kw INTL 

H2° 
W@ m- 
-I__ 

385 

339 

.344 

* 351 

338 

35s 

.348 

354 

.360 

0 365 

379 

* .  



11Nl 

INSTANT CHECKOU 
0, 

i :--a 2 

DAW POINT 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

POWER 

6.66 

9.20 

10.15 

11.82 

12.04 

13-09 
% 

14.1 

14.95 

16.4 

17.24 

. 18.13 

18.92 

20.11 

21 -43 

18.3 

15 -3  

12.2 

9.95 

70 

100 

110 

110 

115 

120 

125 

130 

1-35 

150 

150 

150 

165 

166 

3-55 

140 

130 

110 

TIP PRESS, 1 HYDROPHON 

: 330 

330 

330 

330 

330 

330 

330 

330 

330 

330 

33-0 

310 

165 

a80 

190 

205 

215 

225 

e35 

240 

260 

270 

180 

180 

\ TABI;E B-3 

DATA FROM LAMP #l (1968) 

180 

175 

165 

3-45 

140 

120 

120 .. 

105 

104 

145 

165 

:Am. FLOW 

LATE (GPbI) 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

. 4  

4 



w #l ' 
1 
4 

RUN 1 
'TRIAL RUN 
?RUN 2 

DATA POINT 1 . 
i 

2 

3 
! 4 

5 
6 
7 

1 

:RUN 3 
]DATA POINT 1 

2 

3 
4 
5 
6 

4 7 

RUI!I 4 
TRIAL RUN 

I 

I 

:RUN 5 
"DATA P O I N T  1 

2 
I 3 

4 
5 
6 
7 

1 

RUN 6 
ITRIAL RUN' 
*RUN 7 
DATA POINT 1 

2 

3 
4 
5 

* 

w#2 
RUN 1 
DATA POI8" 1 
RUN 2 
DATA POINT 1 

2 

10.9 
13.5 

16.5 
19.2 
23 .o 
25.5 

11.1 

13.6 
16.3 
18.9 
22 .o 
24.7 
27.6 

11.2 

13.. 6 
16.2 
19.0 
22 .o 
24.9 
27.8 

11.1 

13.5 
16 
19 
21.7 

8.5 
11.0 

450 
500 
5 50 

300 
350 
400 

450 
500 

5 50 
600 

300 
350 
400 
450 
500 

5 50 
600 

300 
350 
400 
450 
500 

293 
350 

403 a 

DC VOLTAGE 

(VOLTS) 

1 - 
- - ?  

37.2,  
38.8 

40.8 
42.6 
46 .O 

46 -3 

37.0 
39.0 
40.7 
42.3 
44.0 
45 .O 

46 .O 

37.3 
39 
40.6 
42.2 
44 
45.3 
46.3 

37.0 
38.6 . 

40.1 
42.2 

43 *5 

ENVELOPE 

TEIMP (") 

450 
487 

535 
565 
600 

645 

387 
470 
510 
550 
590 
612 
650 

398 
475 
520 
565 
600 
635 
65 5 

400 

470 
5x5 
555 

._ 

TABLE B-4 
DATA FROM LAMPS #l (1969) AND #2 (1969) 

250 

250 
300 

34 19 
36.8 

XENON 

Fmss (psr) 

93 
100 

104 
110 

117 
122 

90 
108 
120 

130 
135 
142 

142 

90 
108 
118 
130 
140 

142 
142 

95 
100 

106 
113 
118 

65 

75 
82 

IIYl'XNSITY 
W/ster 
Avg .75' -10:' 

680 

850 

1075 
1275 
1550 
2060 

650 
825 

1000 

11%) 
1425 
1700 
1940 

620 
810 

980 

1320 
1580 
1810 

1140 

575 
740 
890 

1070 

250 

rJ 360 
+500 
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Y3IAL RUN 
RUN 2 
: :.TA POINT 1 

! 
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4 .  
5 
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,i 

7 

1 

2 !T 3 
I ITA POINT i 

2 

1 1 3 

j 
4 
5 
6 
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TRIAL RUN 

j ITA POINT 1 

2 

: jpJ 5 

5 3 
4 
5 
6 
7 

h h  5 
Tl$C.flL RUN 
I ~IY 6 
biTA POINT 1 

2 

3 
4 

TA POINT 1 

2 

POME8 

(kW) 

- 

10.9 - 

13.5 a 

16.5 
19.2 
23 .O 

25.5 

11.1 

13.6 
16.3 
18.9 
22 .o 
24.7 
27.6 

11.2 

13.6 
16.2 
19.0 
22 .o 
24.9 
27.8 

11.1 

13.5 
16 

21.7 
19 

8- 5 
11.0 

~0DE-T;ZBW 
?ATE(GIM) 

2.0 

2 .o 

2 .o 
2.3 
2.4 
2.4 

1 *7 
1.7 
1.7 
1.8 
1.8 
1.8 
1.9 

1.2 

1.2 

1 .2  

1.2 

1.2 

1 .2  

1.25 

.6 
e5 
.6 
-5 

. .I 

7.5 

9.0 

10.8 
12 .o 
13 .o 
14.5 

8.4 
9.9 
11.3 
13.3 
25 
28.5 
?7.5 

7 *15 
8.85 
9.65 
10.7 
12 075 
13.85 
14.25 

24.3 
28.8 
33.5 
38.2 

Porn# ABS. I N  
AUdDE WATEfi 

Kw 
yy_ 

3.96 

4.74 

5 *70 

7.28 
8.26 
9.20 

3 -78 
4.47 
5 e09 
6.31 
7.35 
8.06 
9.26 

4.27 
4.85 

- 5.47 
5-92 
6.71 
7.44 
8.09 

. 3.84 
3.81 
5 -30 
5 005 

- 

.363 

,352 

.346 

.380 
-359 
.361 

.341 
329 

.312 

.335 

.335 

.327 

.336 

.380 
357 

.337 

.312 
305 

.298 
-290 

.346 

.283 
332 

,266 

NORMRLIZED Kw -- 

6.12 

7.65 

9.68 
11.48 
13.95 
18.54 

5.85 ' 

9.00 

10.71 
12.82 

17.46 

7.42 

15.3 

5.58 
7-29 
8.82 

PO .26 
11.88 
14.22 
16.29 

5 -175 
6.66 
8.01 

9.63 

7.0 
7.0 

2.5 
2.6 

4.61 
4.81 

.543 

.438 
3.24 
4.50 

NOrnJ&ILlI ZED 
- .  . "  

.561 

.567 

.586 

.598 

.606 
- 727 

-527 
.546 
* 552 
.567 
' 583 
.619 
.633 

.498 

.536 

.544 

.540 
,540 
571 

.586 

,466 
493 

.g01 

507 

.260 

.381 

.410 
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, k A L  RUN 
RUN 2 

4TA POINT 1 

5) 
4 
5 
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‘ pTA POINT 1 

2 

. /T 3 
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4 

I 5 

I 7 

i 
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1 

4 
R h  4 
‘“7IAL RUN 
‘ :m 5 
DATA POINT 1 

2 
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4 
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6 
7 

Kh 7 
TA POINT 1 

2 

3 
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5 

RUN 1 
?4TA POINT 1 

DATA POINT 1 

2 

)OVER 

(kW) 

10.9 - 

13.5 

16.5 
19.2 
23 .o 
25.5 

11.1 
13.6 

18.9 
22 .o 
24.7 

18.3 

27.6 

11.2 

13.6 
16.2 

19.0 
19.0 

27.8 
24.9 

11.1 

13.5 
16 - 

19 
21.7 

8.5 
11.0 

ANODE 
m G z  

WATER PRESS 
IN/OUT ( PSI ) 

300160 

200/80 

130/65 . 

125/65 
125/65 

125165 
12!5’/65 
120165 
120 165 

49/22 
49/22 
49/22 
50/20 

AN0’;SEI TTP 
WATER PRESS 
IN (PSI) 

230 

225 

226 
220 

210 

210 

185 
145 
160 
160 
1-50 
150 
150 

1-90 
184 
134 

155 
155 
155 
145 

22 

22 

22 

22 

ANODE TIP 
WATER PRESS 

C E m R  
PSI 

38 

37 

40 
42 
67 
67 

60 
60 
62.5 
65 
69 
69 
75 

62 
64 
63 
65 

65 
70 
67 

.36 
37 
37 
37 

‘JJIBJZ B-6 

38 

43 

44 
.46 
55 
57 

54 
53 
60 
65 
65 . 

67 
72 

65 
66 
66 
67 

67 
71 
67 

47 
47 
45 
45 

- 

DATA FROM LAMPS #1 (1969) AND #2 (1969) 

198/100 

198/aoo 
ig8/ioo 

ANODE 
PLOM 
RATE 
(GRVI) 

- 

2 .o 

2.0. 

2 .o 
2.3 
2.4 
2.4 

1 .7  
1.7 
1 .7  
1.8 
1.8 
1.8 
1 .9  

1.2 

1 *2 

1 .2  

1 .2  

1 .2  

1 .2  

1.25 

.6 
- 5  
.6 

$5 

7.0 

7.0 
7.0 



R U N 1  - DAT&POINTl - 

POWER THEmocoupL;E (OC) 

No. 3 No. 4 
L 

No. 2 

173 152.5 

RUN 2 - DATABOINTl 8.5 185 375 205 

2 U.0 220. . 220 217 



Figure €3-la 

Lamp Voltage vs Current and Power 
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Envelope Temperature vs Power 
' Lamp if1 (1969) 
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Figure B-3 
Xenon Pressure vs Power 

Lamp #l (1969) 
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Figure B-5 
Anode Flow R a t e  vs Power 

LanP #l (1.959) 
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Anode Water Temperature 
Different ia l  versus Power 
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Figure B-7 
Power Absorbed i n  Anode 
Water Versus Power 
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Figure B-10 
Normalized Radiated Power 
versus Lamp Power. 

Lamp #1- (1969) 
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Figure B-11 
zxliode Water Pressure a t  Three Loca- 
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Figure B-15 - Close Up View of Anode Tip Showing Hole Caused. 

By Electron Beam Lamp #2 (1969) 


